

316L

MISSION-CRITICAL AND SAFETY-CONSCIOUS APPLICATIONS

Material Description

GMP 316L metal powders have been specifically designed and optimised for use in Additive Manufacturing (AM).

GMP 316L metal powders are widely used and successfully proven in AM. **GMP 316L** powder processes well across the broad spectrum of AM machines and technologies due to their excellent flow and melting characteristics in PBF and EBM applications.

GMP 316L is an austenitic stainless steel with low C, N and O content, which offers good ductility and corrosion resistance. Often used in medical settings and where corrosion resistance is required, **GMP 316L** delivers excellent mechanical properties without requiring heat treatment.

Material Properties	Typical Applications	Relevant Sectors	Applicable Specification	
Good corrosion resistance Good ductility High toughness	Surgical devices Corrosion resistant components Pumps Tooling	Medical Marine Aerospace Industrial	ASTM F3184, AMS7037 Relevant specifications: DIN 1.4404, ISO 5832- 1, SAE J405 (316L), UNS S31600/S31603	

PSD

20-53μm - 15-53μm - 15-45μm - 45-150μm - 45-106μm Custom PSD available on request

APPLICATIONS

Laser Powder Bed Fusion(LPBF) - Direct Energy Deposition(DED)

Electron Beam Melting(EBM)

AEROSPACE & DEFENCE - ENERGY - MEDICAL - AUTOMOTIVE-PRECISION ENGINEERING

YOUR GLOBAL LEADER IN GAS ATOMISED METAL POWDERS

Our range of metal powders for additive manufacturing is optimised for powder bed fusion, direct energy deposition and electron beam melting technologies. Deploying advanced processes including anti-satellite technology, Globus powders deliver excellent flowability and spreadability.

GENERAL PROPERTIES				Chemical Composition		Industry Powder Names		
PSD Apparent Density Hall Flow	Measured and re	d10, d50, d90 reported Measured and reported Measured and reported			bal. 16.0-18.0 10.0-14.0 2.0-3.0	316L 1.4404 SS316L 1.4404 (316L)		
Physical Properties*				Mn Si	≤2.0 ≤1.0	同級		
		7.99 g/cm ³		N O	≤0.01 ≤0.03		程.	
Thermal Conductivity Melting Point			6.2 W/mK 371°C - 1399°C		≤0.045 ≤0.03			
*typical values				s wt%	≤0.03			
cypical values		Mecha	nical Prop	erties				
		0.2% Yield Strength (MPa)	Tensile Strength (MPa)	Elongation (%)	E-modulus (GPa)	Impact Toughness (J)	Hardness (HRC)	
As Built	Horizontal							
	Vertical	430	525	873987	190	186		
		Hea	t Treatme	nt				

Heat treatment for **GMP 316L** is not recommended for strengthening. Other traditional post processing techniques can be deployed including general machining, grinding etc. Further information can be provided by our technical experts.

Atomisation Process	Powder Quality
Vacuum inert gas atomisation Anti-Satellite technology Argon gas atomised AMS7002	Highly Spherical Very few satellites Excellent flowability Low oxygen, nitrogen High Apparent Density
	Contact

Globus Metal Powders is committed to providing customers with premium powder with guaranteed **Excellence in Every Particle** as well as direct customer support, including metallurgy and AM experts.

Our range of metal powders includes alloy steel, stainless steel, nickel & cobalt alloys.

Globus Metal Powders offers a diverse yet premium range of metal powders and alloys for Additive Manufacturing (AM) and Hot Isostatic Pressing (PM-HIP), along with next generation alloy development including custom grades.

Contact the Globus Metal Powders team for additional information or technical support.

Mechanical and physical properties are provided for guidance only and depict typically achievable properties and are not provided as guaranteed values or design data. Results achieved can vary significantly depending on AM processes, parameters, and part design/geometry.

Globus Metal Powders

Eston Road, Middlesbrough, TS6 6US United Kingdom

Tel +44 (0) 1642 929130 Email gmp@globusmetalpowders.com Web www.globusmetalpowders.com ©Copyright 2023 Globus Metal Powders

GMP HIP Optimised For PM-HIP

GMP AM Optimised For Additive Manufacturing

GMP Custom Next Generation Alloy Development